\(\int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^{5/2} \sqrt {\sec (c+d x)}} \, dx\) [628]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (warning: unable to verify)
   Maple [B] (warning: unable to verify)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 431 \[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^{5/2} \sqrt {\sec (c+d x)}} \, dx=-\frac {2 \left (3 a^2 A+A b^2-4 a b B\right ) \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^2 (a-b) (a+b)^{3/2} d \sqrt {\sec (c+d x)}}+\frac {2 (a (3 A+B)-b (A+3 B)) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a (a-b) (a+b)^{3/2} d \sqrt {\sec (c+d x)}}-\frac {2 (A b-a B) \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)}}+\frac {2 \left (3 a^2 A+A b^2-4 a b B\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)}} \]

[Out]

-2/3*(A*b-B*a)*sin(d*x+c)/(a^2-b^2)/d/(a+b*cos(d*x+c))^(3/2)/sec(d*x+c)^(1/2)+2/3*(3*A*a^2+A*b^2-4*B*a*b)*sin(
d*x+c)*sec(d*x+c)^(1/2)/(a^2-b^2)^2/d/(a+b*cos(d*x+c))^(1/2)-2/3*(3*A*a^2+A*b^2-4*B*a*b)*csc(d*x+c)*EllipticE(
(a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(
a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^2/(a-b)/(a+b)^(3/2)/d/sec(d*x+c)^(1/2)+2/3*(a*(3*A+B)-b*(A+3*B))*
csc(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*cos(d*x+c)^(1/2
)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/(a-b)/(a+b)^(3/2)/d/sec(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 1.18 (sec) , antiderivative size = 431, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {3040, 3078, 3072, 3077, 2895, 3073} \[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^{5/2} \sqrt {\sec (c+d x)}} \, dx=-\frac {2 \left (3 a^2 A-4 a b B+A b^2\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{3 a^2 d (a-b) (a+b)^{3/2} \sqrt {\sec (c+d x)}}+\frac {2 \left (3 a^2 A-4 a b B+A b^2\right ) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d \left (a^2-b^2\right )^2 \sqrt {a+b \cos (c+d x)}}-\frac {2 (A b-a B) \sin (c+d x)}{3 d \left (a^2-b^2\right ) \sqrt {\sec (c+d x)} (a+b \cos (c+d x))^{3/2}}+\frac {2 (a (3 A+B)-b (A+3 B)) \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{3 a d (a-b) (a+b)^{3/2} \sqrt {\sec (c+d x)}} \]

[In]

Int[(A + B*Cos[c + d*x])/((a + b*Cos[c + d*x])^(5/2)*Sqrt[Sec[c + d*x]]),x]

[Out]

(-2*(3*a^2*A + A*b^2 - 4*a*b*B)*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqr
t[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d
*x]))/(a - b)])/(3*a^2*(a - b)*(a + b)^(3/2)*d*Sqrt[Sec[c + d*x]]) + (2*(a*(3*A + B) - b*(A + 3*B))*Sqrt[Cos[c
 + d*x]]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(
a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(3*a*(a - b)*(a + b)^(3/2)
*d*Sqrt[Sec[c + d*x]]) - (2*(A*b - a*B)*Sin[c + d*x])/(3*(a^2 - b^2)*d*(a + b*Cos[c + d*x])^(3/2)*Sqrt[Sec[c +
 d*x]]) + (2*(3*a^2*A + A*b^2 - 4*a*b*B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*(a^2 - b^2)^2*d*Sqrt[a + b*Cos[c
+ d*x]])

Rule 2895

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(
Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqrt[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]
*EllipticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2]], -(a + b)/(a - b)], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 3040

Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p, Int[(a + b*Sin[e + f*x])^m*((
c + d*Sin[e + f*x])^n/(g*Sin[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d
, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && IntegerQ[n])

Rule 3072

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*((a_) + (b_.)*sin[(e_.) + (f_
.)*(x_)])^(3/2)), x_Symbol] :> Simp[2*(A*b - a*B)*(Cos[e + f*x]/(f*(a^2 - b^2)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[d
*Sin[e + f*x]])), x] + Dist[d/(a^2 - b^2), Int[(A*b - a*B + (a*A - b*B)*Sin[e + f*x])/(Sqrt[a + b*Sin[e + f*x]
]*(d*Sin[e + f*x])^(3/2)), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[a^2 - b^2, 0]

Rule 3073

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A*(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e +
 f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e +
 f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ
[A, B] && PosQ[(c + d)/b]

Rule 3077

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rule 3078

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(B*a - A*b)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e
 + f*x])^n/(f*(m + 1)*(a^2 - b^2))), x] + Dist[1/((m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c +
d*Sin[e + f*x])^(n - 1)*Simp[c*(a*A - b*B)*(m + 1) + d*n*(A*b - a*B) + (d*(a*A - b*B)*(m + 1) - c*(A*b - a*B)*
(m + 2))*Sin[e + f*x] - d*(A*b - a*B)*(m + n + 2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}
, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && GtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x))}{(a+b \cos (c+d x))^{5/2}} \, dx \\ & = -\frac {2 (A b-a B) \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)}}-\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {1}{2} (A b-a B)-\frac {3}{2} (a A-b B) \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}} \, dx}{3 \left (a^2-b^2\right )} \\ & = -\frac {2 (A b-a B) \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)}}+\frac {2 \left (3 a^2 A+A b^2-4 a b B\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)}}-\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {1}{2} b (A b-a B)+\frac {3}{2} a (a A-b B)+\left (\frac {1}{2} a (A b-a B)+\frac {3}{2} b (a A-b B)\right ) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{3 \left (a^2-b^2\right )^2} \\ & = -\frac {2 (A b-a B) \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)}}+\frac {2 \left (3 a^2 A+A b^2-4 a b B\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)}}+\frac {\left (\left (-3 a^2 A-A b^2+4 a b B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{3 \left (a^2-b^2\right )^2}+\frac {\left ((a-b) (a (3 A+B)-b (A+3 B)) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx}{3 \left (a^2-b^2\right )^2} \\ & = -\frac {2 \left (3 a^2 A+A b^2-4 a b B\right ) \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^2 (a-b) (a+b)^{3/2} d \sqrt {\sec (c+d x)}}+\frac {2 (a (3 A+B)-b (A+3 B)) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a (a-b) (a+b)^{3/2} d \sqrt {\sec (c+d x)}}-\frac {2 (A b-a B) \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)}}+\frac {2 \left (3 a^2 A+A b^2-4 a b B\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)}} \\ \end{align*}

Mathematica [A] (warning: unable to verify)

Time = 14.53 (sec) , antiderivative size = 528, normalized size of antiderivative = 1.23 \[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^{5/2} \sqrt {\sec (c+d x)}} \, dx=\frac {\sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {2 \left (3 a^2 A+A b^2-4 a b B\right ) \sin (c+d x)}{3 a \left (a^2-b^2\right )^2}+\frac {2 \left (-a A b \sin (c+d x)+a^2 B \sin (c+d x)\right )}{3 b \left (-a^2+b^2\right ) (a+b \cos (c+d x))^2}+\frac {2 \left (2 a^2 A b \sin (c+d x)+2 A b^3 \sin (c+d x)+a^3 B \sin (c+d x)-5 a b^2 B \sin (c+d x)\right )}{3 b \left (-a^2+b^2\right )^2 (a+b \cos (c+d x))}\right )}{d}-\frac {2 \sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} \left (-2 (a+b) \left (3 a^2 A+A b^2-4 a b B\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right )+2 a (a+b) (3 a A+A b-a B-3 b B) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )-\left (3 a^2 A+A b^2-4 a b B\right ) \cos (c+d x) (a+b \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{3 a \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)} \sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )}} \]

[In]

Integrate[(A + B*Cos[c + d*x])/((a + b*Cos[c + d*x])^(5/2)*Sqrt[Sec[c + d*x]]),x]

[Out]

(Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((-2*(3*a^2*A + A*b^2 - 4*a*b*B)*Sin[c + d*x])/(3*a*(a^2 - b^2)^2
) + (2*(-(a*A*b*Sin[c + d*x]) + a^2*B*Sin[c + d*x]))/(3*b*(-a^2 + b^2)*(a + b*Cos[c + d*x])^2) + (2*(2*a^2*A*b
*Sin[c + d*x] + 2*A*b^3*Sin[c + d*x] + a^3*B*Sin[c + d*x] - 5*a*b^2*B*Sin[c + d*x]))/(3*b*(-a^2 + b^2)^2*(a +
b*Cos[c + d*x]))))/d - (2*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(-2*(a + b)*(3*a^2*A + A*b^2 - 4*a*b*B)*Sqrt[C
os[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(
c + d*x)/2]], (-a + b)/(a + b)] + 2*a*(a + b)*(3*a*A + A*b - a*B - 3*b*B)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])
]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)
] - (3*a^2*A + A*b^2 - 4*a*b*B)*Cos[c + d*x]*(a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(3*a*(
a^2 - b^2)^2*d*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2])

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(4566\) vs. \(2(391)=782\).

Time = 17.01 (sec) , antiderivative size = 4567, normalized size of antiderivative = 10.60

method result size
default \(\text {Expression too large to display}\) \(4567\)
parts \(\text {Expression too large to display}\) \(4847\)

[In]

int((A+B*cos(d*x+c))/(a+cos(d*x+c)*b)^(5/2)/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/3/d*(csc(d*x+c)^2*(1-cos(d*x+c))^2+1)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)
/(csc(d*x+c)^2*(1-cos(d*x+c))^2+1))^(1/2)*(-2*B*a^4*(csc(d*x+c)-cot(d*x+c))-3*A*a^4*(csc(d*x+c)-cot(d*x+c))+A*
b^4*(csc(d*x+c)-cot(d*x+c))+6*A*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc
(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*b+4*A
*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+
b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b^2+2*A*(-csc(d*x+c)^2*(1-cos(d*x+c)
)^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticE(cot
(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^3+5*B*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(
1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b
))^(1/2))*a^3*b+7*B*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*
(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b^2+3*B*(-csc(d*x
+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^
(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^3-4*B*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)
*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(
d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*b-8*B*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c)
)^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^
2*b^2-4*B*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x
+c))^2+a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^3-7*A*(-csc(d*x+c)^2*(1-cos
(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*Ellipt
icF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*b-5*A*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c
)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-
b)/(a+b))^(1/2))*a^2*b^2-A*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+
c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^3-4*csc(d*
x+c)^5*B*a^3*b*(1-cos(d*x+c))^5-3*A*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2
-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^4+3
*A*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+
a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^4+A*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+
1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticE(cot(d*x
+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b^4+B*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*
x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2)
)*a^4+8*csc(d*x+c)^5*B*a^2*b^2*(1-cos(d*x+c))^5-4*csc(d*x+c)^5*B*a*b^3*(1-cos(d*x+c))^5+4*csc(d*x+c)^3*A*a^3*b
*(1-cos(d*x+c))^3-6*csc(d*x+c)^3*A*a^2*b^2*(1-cos(d*x+c))^3+4*csc(d*x+c)^3*A*a*b^3*(1-cos(d*x+c))^3-10*csc(d*x
+c)^3*B*a^2*b^2*(1-cos(d*x+c))^3+8*csc(d*x+c)^3*B*a*b^3*(1-cos(d*x+c))^3-6*csc(d*x+c)^5*A*a^3*b*(1-cos(d*x+c))
^5+4*csc(d*x+c)^5*A*a^2*b^2*(1-cos(d*x+c))^5-2*csc(d*x+c)^5*A*a*b^3*(1-cos(d*x+c))^5-2*csc(d*x+c)^2*A*(-csc(d*
x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))
^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b^2*(1-cos(d*x+c))^2+3*csc(d*x+c)^2*B*(-csc(d
*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b)
)^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*b*(1-cos(d*x+c))^2-csc(d*x+c)^2*B*(-csc(d*x+
c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(
1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b^2*(1-cos(d*x+c))^2-3*csc(d*x+c)^2*B*(-csc(d*x
+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^
(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^3*(1-cos(d*x+c))^2-4*csc(d*x+c)^2*B*(-csc(d*x+
c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(
1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*b*(1-cos(d*x+c))^2+4*csc(d*x+c)^2*B*(-csc(d*x+c
)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1
/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^3*(1-cos(d*x+c))^2-csc(d*x+c)^2*A*(-csc(d*x+c)^2
*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)
*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*b*(1-cos(d*x+c))^2+3*csc(d*x+c)^2*A*(-csc(d*x+c)^2*
(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*
EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b^2*(1-cos(d*x+c))^2+csc(d*x+c)^2*A*(-csc(d*x+c)^2*(
1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*E
llipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^3*(1-cos(d*x+c))^2-3*csc(d*x+c)^2*A*(-csc(d*x+c)^2*(1
-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*El
lipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^4*(1-cos(d*x+c))^2+3*csc(d*x+c)^5*A*a^4*(1-cos(d*x+c))^5
+csc(d*x+c)^5*A*b^4*(1-cos(d*x+c))^5-2*csc(d*x+c)^3*A*b^4*(1-cos(d*x+c))^3+2*csc(d*x+c)^3*B*a^4*(1-cos(d*x+c))
^3+4*B*a^3*b*(csc(d*x+c)-cot(d*x+c))+2*B*a^2*b^2*(csc(d*x+c)-cot(d*x+c))-4*B*a*b^3*(csc(d*x+c)-cot(d*x+c))+2*A
*a^3*b*(csc(d*x+c)-cot(d*x+c))+2*A*a^2*b^2*(csc(d*x+c)-cot(d*x+c))-2*A*a*b^3*(csc(d*x+c)-cot(d*x+c))+3*csc(d*x
+c)^2*A*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c
))^2+a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^4*(1-cos(d*x+c))^2-csc(d*x+c)^2
*A*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+
a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b^4*(1-cos(d*x+c))^2+csc(d*x+c)^2*B*(-
csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/
(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^4*(1-cos(d*x+c))^2)/(-(csc(d*x+c)^2*(1-co
s(d*x+c))^2+1)/(csc(d*x+c)^2*(1-cos(d*x+c))^2-1))^(1/2)/(csc(d*x+c)^2*(1-cos(d*x+c))^2-1)/(csc(d*x+c)^2*a*(1-c
os(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)^2/(a-b)^2/(a+b)^2/a

Fricas [F]

\[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^{5/2} \sqrt {\sec (c+d x)}} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(5/2)/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)/((b^3*cos(d*x + c)^3 + 3*a*b^2*cos(d*x + c)^2 + 3*a^2*b
*cos(d*x + c) + a^3)*sqrt(sec(d*x + c))), x)

Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^{5/2} \sqrt {\sec (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))**(5/2)/sec(d*x+c)**(1/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^{5/2} \sqrt {\sec (c+d x)}} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(5/2)/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)/((b*cos(d*x + c) + a)^(5/2)*sqrt(sec(d*x + c))), x)

Giac [F]

\[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^{5/2} \sqrt {\sec (c+d x)}} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(5/2)/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)/((b*cos(d*x + c) + a)^(5/2)*sqrt(sec(d*x + c))), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^{5/2} \sqrt {\sec (c+d x)}} \, dx=\int \frac {A+B\,\cos \left (c+d\,x\right )}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \]

[In]

int((A + B*cos(c + d*x))/((1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))^(5/2)),x)

[Out]

int((A + B*cos(c + d*x))/((1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))^(5/2)), x)